Euclidean distance d = sqrt((x2-x1)²+(y2-y1)²). I can create it like thus: 4²=16, 3²=9. d = sqrt(16+9) = sqrt(25)=5. Now I can create examples: d = sqrt((14-10)²+(9-6)²) = sqrt(4²+3²) = sqrt(16+9) = sqrt(25) = 5. When x2=14, x1=10, y2=9, y1=6, then x1=10 and y1=6 = [10,6] and x2=14, y2=9 = [14,9] then Euclidean distance d = sqrt(14-10)²+(9-6)² = sqrt(4²+3²) = sqrt(16+9) = sqrt(25) = 5. So d=5.